
2/24/2011

1

Push Button High Reliability

From Deep Space to Deep Sea

Safe Virtual Machine

for C in less than 3 KiBytes

Bernhard H.C. Sputh , Eric Verhulst, Artem Barmin,
and Vitaliy Mezhuyev

Email: {bernhard.sputh, eric.verhulst,
Artem.barmin, vitaliy.mezhuyev}@altreonic.com

http://www.altreonic.com

Outline

• History of Altreonic
• Design of the Safe Virtual Machine for C (SVM)
• Integrating the SVM in the OpenComRTOS-Suite
• Performance Figures
• Conclusions
• Further Work

24/02/2011 Visit us at Booth 11-101 2

2/24/2011

2

History of Altreonic

� Eonic (Eric Verhulst): 1989 – 2001

� Developed Virtuoso a Distributed RTOS

� Communicating Sequential Processes as foundation of
the “pragmatic superset of CSP”

� Open License Society: 2004 – now

� R&D on Systems and Software Engineering

� Developed OpenComRTOS using Formal Methods

� Altreonic: 2008 – now

� Commercialises OpenComRTOS

� Based in Linden (near Leuven) Belgium

24/02/2011 Visit us at Booth 11-101 3

Design goals for the SVM

� Distributed heterogenous systems are hard to maintain

� Each target runs different binary, staticly compiled

� Different compilers, different versions, different CPU variants

� If system is large, probability that some nodes will fail or
present issues is high

� Still, system must remain operational during maintenance

� Dynamic code loading, independently of target CPU

� Back-up functionality for mis-behaving tasks

� Boundary conditions:

� C is most often used embedded programming language

� Memory resources are strictly limited

24/02/2011 Visit us at Booth 11-101 4

2/24/2011

3

Design of the SVM

� Execution engine for OpenComRTOS Tasks,
written in ANSI-C.

� The C-Code gets translated into a binary using a
standard C compiler

� The SVM interprets this binary format.

� One Instance of the SVM executes in one
OpenComRTOS Task, as Guest-Task.

� OpenComRTOS virtualises hardware for the SVM
Guest-Task

24/02/2011 Visit us at Booth 11-101 5

Selecting a VM Instruction Set

� Criteria on the Instruction Set (IS):

� Compact byte code, i.e. small binaries

� Not too many instructions

� Availability of good toolchains / compilers

� Instruction Sets evaluated : MIPS, ARM Thumb-1, and
Xilinx Microblaze

� Chosen Instruction Set: ARM Thumb-1:

� Compact instruction set, all instructions, except one, only
have 16bit

� Widely used within the industry

� But it can be any other IS as well

24/02/2011 Visit us at Booth 11-101 6

2/24/2011

4

From the IS to the Interpreter
Source Code – step 1
� The complete Instruction Set (IS) was modeled in a

Domain Specific Language.

� The VM source code gets generated.

� The generator tool chain was written in Haskell.

24/02/2011 Visit us at Booth 11-101 7

From the IS to the Interpreter
Source Code – step 2

24/02/2011 Visit us at Booth 11-101 8

2/24/2011

5

Top Level Model of Push 1

Command "push"
(Opcode ["1011","0","10"])
[Operand "LR" 8 8,

Operand "reg_list" 7 0]
push

24/02/2011 Visit us at Booth 11-101 9

Top Level Model of Push 2

push = do
when' (v "LR" .== i1) $

do
r "SP" .-= i4
m [r "SP" .+ i0] .= r "LR"

for' ([("i",i0),("j",i1)], v "i" .< i8,
do {v "i" .+= i1;v "j" .<<= i1}) $

when' ((v "reg_list" .& v "j") .> i0)$
do
r "SP" .-= i4
m [r "SP" .+ i0] .= rv "i"

24/02/2011 Visit us at Booth 11-101 10

2/24/2011

6

Integrating the SVM in the
OpenComRTOS-Suite

� Building the binary

� Virtualising the underlying OS and hardware

� Using the SVM inside an OpenComRTOS-System

24/02/2011 Visit us at Booth 11-101 11

Building the Binary

� OpenComRTOS is designed to support heterogeneous
systems, i.e. systems that consist of different CPU-
Architectures, which are called a `Platform’

� The SVM is just another platform that OpenComRTOS must
support

� The SVM-Platform provides all the necessary support code
in order to compile and link an OpenComRTOS-Task to form
a binary file which can be loaded into the SVM.

� Furthermore, access libraries for all components that have
been developed for OpenComRTOS can be used from
within an SVM-Task.

24/02/2011 Visit us at Booth 11-101 12

2/24/2011

7

Virtualising the underlying OS 1

� OpenComRTOS has two principal entities:

� Tasks:
− Prioritised (256 priorities are available);

− Tasks do not share memory;

− Tasks communicate with Hubs using Packets.

− Also the Kernel is a task

� Hubs:
− Generic synchronisation primitive in OpenComRTOS

− Hubs operate system-wide, but transparently → Virtual
Single Processor (VSP) programming model.

24/02/2011 Visit us at Booth 11-101 13

Virtualising the underlying OS 2

� Services offered by Hubs

� Event – Synchronisation on a Boolean value;

� Semaphore – Synchronisation with a counter;

� Port – Synchronisation and exchanging a packet, i.e.
data transport (CSP Channel like);

� Resource – Locking mechanism, with ownership;

� FIFO – Buffered packet communication;

� User defined Hubs are possible!

24/02/2011 Visit us at Booth 11-101 14

2/24/2011

8

Virtualising the underlying OS 3

� Accessing to the underlying OS-API is done by using a
Software Interrupt (SWI instruction ARM Thumb-1)

� Due to the OpenComRTOS API, being represented by the
exchange of L1_Packets, only one function had to be
provided: L1_buildAndInsertRequest()

� Additionally the SVM-Platform gets currently an extension to
allow Guest-Tasks direct access to the memory of the Host

� Using the native OpenComRTOS, the SVM tasks have full
access to underlying hardware, including other processing
nodes in the network

24/02/2011 Visit us at Booth 11-101 15

Using the SVM

� The SVM consist of two elements:

� Topology: SVM-Platform:

� OpenComRTOS Virtualisation

� Build System

� Component access libraries

� Application: SVM-Component:

� Virtual Machine Task

� Control Task

24/02/2011 Visit us at Booth 11-101 16

2/24/2011

9

Using the SVM 1

24/02/2011 Visit us at Booth 11-101 17

Using the SVM 2

24/02/2011 Visit us at Booth 11-101 18

2/24/2011

10

Using the SVM 3

24/02/2011 Visit us at Booth 11-101 19

Using the SVM 4

24/02/2011 Visit us at Booth 11-101 20

2/24/2011

11

Using the SVM 5

24/02/2011 Visit us at Booth 11-101 21

Performance Figures

24/02/2011 Visit us at Booth 11-101 22

• Memory Requirements of the isolated SVM.

• Comparing the memory requirements of a System
with and without using the SVM.

• Performance Degradation, caused by the SVM.

2/24/2011

12

Memory Requirements of the SVM

Optimisation Code Data
-O3 3,818 Byte 476 Byte
-Os 2,838 Byte 476 Byte

24/02/2011 Visit us at Booth 11-101 23

Compiled for ARM-Cortex-M3, using the Code Sourcery 2009q1 arm-none-eabi
toolchain. The figures include the Supervisor and Interpreter tasks, and their helper
functions. It does not include any data memory for the Guest-Task.

Impact on Memory Requirements

24/02/2011 Visit us at Booth 11-101 24

Filename Text Data Bss Dec Hex

ArmNode 8140 1736 4736 14612 0x3914

Task_svm 696 24 60 780 0x30c

Filename Text Data Bss Dec Hex

ArmNode 4068 892 1708 6668 0x1a0c

Semaphore Loop without Safe Virtual Machine:

Semaphore Loop with the Safe Virtual Machine:

Compiled for ARM-Cortex-M3, using the Code Sourcery 2009q1 arm-none-eabi
toolchain, with compiler optimisation –Os.

2/24/2011

13

Performance impact

24/02/2011 Visit us at Booth 11-101 25

• In the previously presented system, the runtime of
the Semaphore loop increased by a factor of 7.26

• Depends on:

1. The native code was compiled for ARM-Thumb-2
which might give better performance

2. The current Instruction decoder implementation is
not ideal, caused by the irregularity of the ARM-
Thumb-1 Instruction set (not a restriction in HW, but
for SW)

SVM application domain

24/02/2011 Visit us at Booth 11-101 26

• Not intended for high speed computations!

• Dynamic code with small memory requirements

• Target independent execution

• Typical use:

• Diagnostics, post-deployment

• Back-up tasks for natively failing application tasks

• Run-time monitoring and logging

• Execute existing binary code without compilation
• Might require regenerating SVM for other IS.

2/24/2011

14

Conclusions

� Generating the source code of the Virtual Machine, from
High-level models made it easy to get the SVM code right.

� We can adjust the SVM to support almost any instruction
set, by developing a top-level model of it.

� The OpenComRTOS Architecture made it easy to implement
the OS-Virtualisation.

� The SVM brings OS-Virtualisation to deeply embedded
systems (minimal overhead of 8kiByte)

� The SVM is useful in many Scenarios:

� Isolating OpenComRTOS Tasks from each other.

� Diagnostic of the Host-System

� Runtime reconfiguration, for high reliability systems.

24/02/2011 Visit us at Booth 11-101 27

Further Work

� Automatic Stack monitoring by the SVM.

� Mobility of SVM-Tasks, i.e. moving tasks during
runtime from one SVM instance to another instance.

� Native execution of SVM-Tasks, if the CPU
supports the ARM-Thumb-1 instruction set.

� Improving the performance of the instruction
decoder.

24/02/2011 Visit us at Booth 11-101 28

2/24/2011

15

24/02/2011 Visit us at Booth 11-101 29

Questions?Questions?

“If it doesn't work, it must be art.
If it does, it was real engineering”

24/02/2011 Visit us at Booth 11-101 30

Thank You for your attention

Visit us in Hall 11.0 Booth 101

